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ON THE REALIZATION OF CONST~INTS IN NONHOLONOMIC MECHANICS* 

V.N. BRBNDBLBV 

The possibility of realizing nonholonomic constraints using large nonconservative 
forces is considered. Mechanical characteristics of some geometric objects investi- 
gated in /l/ are presented. This makes it possible to consider in a naturalwaythe 
transition from the principle for systems without constraints to that of systems 
with constraints. Basic formulations are given in invariant form. An example is 

presented. 

1. Consider a smooth dynamic system defined by the Lagrangian L, a smooth functiononthe 
tangential stratification TM of the configuration space M, which is equivalent to specify- 

ing the Hamiltonian H, a smooth function on the cotangent stratification T*M. The Legendre 
representation 2: TM-+- T*Mcorresponcls to the Lagrangian L. 

se denote the local coordinates in Mhy ql, . . .,‘q”, in TM by q’. . . .,q*, q”, . . .,p*‘. andin 
T* M by q’, . . ., q*, p’, . . ., p"; pi = 8Liaq’. The nonconservative forces are defined in TMby the 
horizontal form CO, or by form a*= (Z-l)*@ in T*M. In coordinate notation 

(a= i; Qib, 0 hi, 
i-1 

O-J* -iii Qi (n, PI&’ 

Wte system trajectories are integral curves of vector field x in T*M, whichisdefined 
by the equation /2,3/ 

x_lsa=--dH+o* (1.1) 

where 51 is a simplectic form in T*M. 
In coordinate form Eq.(l.l) is equivalent to Hamilton's equations with nonconservative 

forces 
dq?dt = W/ap’, dp’ldt = --8H18qi + Q, 

If Lagrangian L is nondegenerate, Z is a local diffeomorphism. Then, if G is the in- 
tegral curve of field X in T*iW and C* = (Z+)*C is a curve on TM, C*is the integral 
curve of field Y = @-1)*X in TM. Consequently, the system trajectories areintegralcurves 
of field Y -(Z-l), X in TM. Applying to formula (1.1) mapping Z*, we obtain for field Y 
an equation of the form 

Y _IS, + dHL = w (1.2) 

where Sa, = 2% is the fundamental 2-nd form of the Lagrangian Land HL = Z*H is the energy 
that corresponds to that Lagrangian. Equation (1.2) corresponds to the pr~cipleofd'Al~ert 

/I/. In coordinate form this equation is a Legendre equation of the second kind 

If the Lagrangian L is nondegenerate and I: A' (T*M) + Veot (T*M) is a simplectic iso- 
morphism, f,= (Z-l),~ I o (Z-l)*,IL:hl (TM)+ Vect (TM) is an isomorphism of l-fonnsandofvector 
fields, and Eq.(1.2) assumes the form r~?(u) = -dHL 3_ w , hence 

Y = --IL WL) -I- IL (4 (1.3) 

where h"(K) and Vect(K) are moduli of linear differential forms and of vector fields, res- 
pectively, in the manifold K (in our case K is TM and T*M), and IL(o) is the vector field 
of force o relative to the given mechanical system. In coordinate form (1.3) are Legendre 
equations that are solvable for derivatives. 

,If L is a Lagrangian of the mechanical typeF i.e. L=‘ipgt~‘qf f V(q), where G = ~l~g~*~i 
@d$ is the Riemannian metric in M,and U(q) is the force function, Eqs.(1.3) assume the 
form 

Wdt=q", d$'/dt= p:,(q)q"cl" + g'" @u/8$ + Q& 
_.__ 
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where rkli are the Christoffel symbols of Riemannian connectedness associated with metric i;. 

2. Let mindependent linear nonholonomic constraints 

be imposed on the system. 
We assume the constraint to be defined by the m-dimensional codistribution n on ri,l 

stretched over forms ~jf A'(M) defined by the equalities Xj (X)(a)= Sx*(h~)(a), where SK: &f-+ 
TMis the graph of an arbitrary cross section of X. In coordinate form 

The specification of distribution D is equivalent to specifying a (n-m) -dimensional 
distributions in M:in each tangent subspace T,lw is fixed a (n - m)-dimensional subspace 
~~(~,in which must lie the velocity vector. 

It was shown in /4,5/ that a holonomic constraint may be defined as the limit case of a 
system with large potential energy. A particular case of realization of a nonholonomic con- 
straint (the motion of Chaplygin's sled by inertia was considered in /6/. We shall consider 
the general case of linear nonholonomic constraints. 

Let us substitute force 

F=-p $ hjlX*Xj (2.2) 

j=l 

for the nonholonomic constraint (2.1) which depends on parameter p>O. In this equation ;G 
is the natural projection of TM on .%! * We also represent force (2.2) in the form F-<dCD 
where the potential 

(D=-+&hj8 

j=l 

Operation %:A' (TM)+hl(TM) was defined in /L/ in coordinatenotation z: adq + bdq’w bdq). 
Note that force F belongs to codistribution n*D. 

Ii L is a Lagrangian of the mechanical type, the vector field F:f=F of force F relat- 
ive to the mechanical system considered is an acceptable geometric characteristicofthatforce. 
Since the form of F is horizontal, the field 1LF is vertical /l/. For any ~ETM the iso- 

morphism/7/1E :T&f-+To (T&f), where a = 3% (El, is determinate. In coordinate notation, when 

then 

For any point f~ TM vector l~-l.(I,F)s is orthogonal to the subspace DZ& in metric G. 
The equationsofmotion of the system with acting force F are of the form 

X J Q = -dH + co* + F* (2.3) 

In coordinate notation 

dqi/dt = 8HBp’ 

We select the quasi-velocities sl',...,?i"';a~~ -= a%$'* so that Pm+* = h,, j 7 1,. . ., m; Q", . 

* *, P", nl., . . . (5Pm*) is a system of coordinatesofthesubmanifold S = ((p, $)E TM]hj(q, q’) =o) 
and pass to coordinates vi = aL*/&c” = bikpk in T*M, where C* (q, n’) =L (q, q’ (q, n’)), U,‘bk’ = 6ri. 1x1 
the system of coordinates q', . . . . qn, V’, . ..,Vn Eqs.(2.3) are of the form 
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dd_b i aB* 
dt b dqk-YW 

j s + Q&i _ p 2 h,@-m+B 

a=1 

The form of Eqs.(2.3) in the system of coordinates q,V implies that when p = 00 they 
become the equations of motion of a system with constraints (2.1). 

3. Using the notation (zcl, . . . . 9”) = (ql, . . ., $‘, VI,. ..,v”), 2n - m = I we write Eqs. (2.3) 
in the form 

ri. = gi (r", . . ., x2"), i = 1, , . ., 1 

8 (d+j) = Egil.j (X) + hj (Z), j = 1, . , ., m 
(3.1) 

where E = l/y is a small parameter. 
Further analysis is effected locally, assuming that system (3.1) is in region u of 

space P of variables xl,..., 2”. Unless otherwise stated, solutions will be consideredwitb 
the initial condition P, = (I~~,...,x,~“) on surface I' = {z /h(.z) = 0). 

Beside system (3.1) we consider the system 

Xi' zz gi (X) 

e, (xl+i)' = E&+j (d + 

whose solution we denote as follows: 

z = Cp (t. El, 81) 

hj (4 
(3.2) 

(3.3) 

Function m(t, s, a) is also a solution of system (3.1) (with the same initial condition 

PO) * Suppose that function g,, h is analytic in region U. Then with a small El we 
can represent solution (3.3) in the form of series /8/ 

'P@, En az) = 9)~ @, sa) + &$I @>%) (3.4) 

where ~~ (i,ep) is the solution of system (received from (3.2) when er = 0) 

I' zz gi (Z), E2 (X'"')' =T hj (X) 

Solution (3.3) was derived for 0 q e1 < Ed', 0< e,.< ezo , and series (3.4) uniformly con- 
verges with respect to t for O,< t< T. In what follows various constants whose values are 
unimportant are denoted in like manner. We shall also consider the system 

2' = gi tX):)I WZ+j fx) + hi(s) = O (3.5) 

which is obtained from (3.2) for a2 = 0, and, also, the equation of rapid motions of system 
(3.2) 

'8% (s"+j)' = algl+j (2) f hj (t) (3.6) 

When L is a Lagrangian of mechanical type 

G + '/gfj dq" Q, dqj = ‘/sC<j &’ @ dnj 13.7) 

which implies that 

ah,/ai+j = - pd,,,,++, n-m+j, i, j = 1, . . ., m 

where II dti II is a matrix inverse of matrix IIcijII. Since matrix 
matrix (1 i3hJ~x'+')I is negative definite. 

11 &II is positive definite, 
Nence, if e1 is small, all roots of the character- 

istic equation of system (3.6) have negative real parts. Note that a similar proof also ap- 
plies when L is an arbitrary positive definite Lagrangian. 

Thus any point on surface &,gt+j@) -!-h>(x) = 0,j = 1,. - ., m represents an asymptotically 
stable equilibrium position of Eq.f3.6). Consequently the conditions of Tikhonov's theorem 
/8,9/ are satisfied, and for O<t< T there exists the limit lim-cp(t, or, s)=(l)@, q) which 
uniformly converges with respect to t on any segment [to, T), 0 < to 5 T, where J! 0, 8,) is 
the solution of system (3.5) with the initial point P, = (501,...,20,.q(+1,...,~~~) lying on 
surface sl&+l (.r) + h, (2) = 0 (it can be assumed that $(t,e,) is discontinuous with respect to 
x1+) with initial condition P, ./8/). AS er+OP,--+ P,and there exists the limit liw_&(t, 
ed = cp~(t), where v,(h) is the solution of system z+ = g, (& hJ(z)=o; i=l,..., I; j=i,.. 
., m. 
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By virtue of Tikhonov's theorem there exists the limit lirn~__+'pO (t, FJ x tpO (t) uniformwith 
respect to t for O<t<T. 

Series (3.4) is in powers of Ed and converges when fzl= Ed’, hence its radius of converg- 
ence r&el' (we assume that r>&~'and that series (3.4) converge absolutely when e,<r). Ac- 
cording to the Cauchy-Hadamard formula 

Ki~~lp,(t,lQI=f<+ 
.7%-o 

Consequently, beyond some ordinal number Z[qn(tre2)/<cn. If a1 < ii( then for any M > 0 

Hence there exists the 

Similarly there exists 

N+M 

Eiii 
er-0. c EX'Vj (‘3 E%) d 

1=N+r j=.-i+, 

finite limit 

the limit 
_ 

Also for O<e,<ieO,O< tQ T we have the limit 

but in that case there exist the finite limits 

i.e. there exist in some interval (0,~) 

Choosing an arbitrary set from IV different numbers El, O<e,<elO, we obtain a system lin- 
ear with respect to functions qI(r,Q, with a nonsero determinant. The boundedness of func- 
tions 'pt (f, er), j = 1,. . ., N when 0 <a, < e,", O<t< Tis proved by solving that system. Let us now 
consider series (3.4) when Ed= e,= E. When O<e\<eO,O< t< T it is majorated by the conver- 
gent series 

1 i 

CC i -5- 
i=o 

Hence series (3.4) is uniformly convergent with respect to 8. When S< E< 8, a< t < 2' 

we have the limit lim- a'rpl(t, E) = 0. It is then possible to pass to lirmrt term-by-term, and 
consequently, for O<t,< T there exists the limit 

When t = 0, cp(O,&,&)= bosh that equality (3.8) is satisfied for O,< t< 2'. The esti- 
mate of I cp(t,s,e)- cpO(b) 1 on segment [O,T] shows that the convergence is uniform. 

Proof of the theorem in Sect.3 is simplified by using the results of /lo/. 

4. The preceding considerations imply that force F(p) realizes the nonholonomic con- 

straint (2.1). This means that when I$ = $(t,p) is the trajectory of system (2.3) with in- 

itial condition P, determined on segment O< t< T, there exists the uniform with respect 
to 2 limit 

Iim q 0, IL) = 4 (t) 
it-m 

The limit function q(t) is the trajectory of a system with constraint (2.11, i.e. at 

large values of parameter p the trajectory of the system with acting force F(p)md*esystem 
with the nonholonomic constraint (2.1) are close. At transition to limit as (p-+ CQf the 

trajectories are the same, with the mean value of force 8' oscillating about S is the reac- 

tion force R of the nonholonomic constraint. Force 8 belongs to the codistribution X*D. 
Thus naturally arises the codistribution in which lie the nonholonomic constraint reaction 
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forces. For Lagrangians of the mechanical type the geometric characteristic of l-formsbelong- 
ing to the codistribution n*D was given in Sect-Z. The constraint realized by force F (IL) 
is ideal. Indeed, the virtual displacement is determined as the vector field T(Z) inTMsuch 
that field Z is cancelled by the codistribution D, But the codistribution n*D cancels field 
T(Z),which means that the work of the constraint reaction force over the virtual displacement 
is zero. 

Example. For small plate with knife cage on an inclined plane /6/ the equation of non- 
holonomic constraint is of the form 

"=-zs'sinIp+p'coscp=O (4.1) 

We substitute a force dependent on parameter p for constraint (4.1). The equations of 
motions in quasi-coordinates are of the form 

Solving system (4.2) with initial conditions = (0) = II (0) = 'p (0) = r (0). = I' (0) = 0, cp= (0) = e. ma 
passing to the limit (~-co), we obtain 

(4.3) 

Equations (4.3) are the equations of motion of the system withthenonholonomicconstraint (4.1). 

The author thanks V.V. Rumiantsev and A.S. Sumbatov for interest in this subject and dis- 
cussion of results. 
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